Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

4-[1-(Phenylsulfonyl)indol-3-yl]-3a,4,-5,9b-tetrahydro-3H-cyclopenta[c]quinoline

R. Sankaranarayanan, ${ }^{\text {a }}$ D. Velmurugan, ${ }^{\text {a }}$. S. Shanmuga Sundara Raj, ${ }^{\text {b }}$ Hoong-Kun Fun, ${ }^{\text {b }}$ G. Babu ${ }^{\text {c }}$ and P. T. Perumal ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025 , India, ${ }^{\text {b } X \text { X-ray Crystallography Unit, School of Physics, }}$ Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{\text {c }}$ Organic Chemistry Divison, Central Leather Research Institute, Adyar, Chennai 600 020, India
Correspondence e-mail: dve@vsnl.com

Received 1 November 1999
Accepted 12 January 2000
In the title compound, $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$, the tetrahydropyridine ring has a conformation intermediate between half-chair and sofa. The tetrahydroquinoline mean plane makes a dihedral angle of $73.3(1)^{\circ}$ with the cyclopentene ring, which adopts an envelope conformation, and an angle of 45.45 (4) ${ }^{\circ}$ with the indole best plane. The dihedral angle between the benzene and pyrrole rings is $2.6(1)^{\circ}$. The orientations of the phenyl ring on the sulfonyl group and of the indole are governed by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions. The packing of the molecule in the solid state is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Comment

Quinolines and indoles have been of interest for many years, since a large number of natural products contain these heterocyclic nuclei, and they are found in numerous commercial products including pharmaceuticals, fragrances and dyes (Padwa et al., 1999). Tetrahydroquinoline derivatives

(I)
exhibit antitumour activities (Jaton et al., 1997) and also act as potent antipsychotic agents (Norman et al., 1996), and a compound containing the tetrahydroquinoline moiety acts as an antischistosomal drug (Billings \& Heidelberger, 1982). They also possess anti-inflammatory (Ohnishi et al., 1981), antiamœbic (Bailey et al., 1979), antiulcer (Uchida et al., 1989) and analgesic (Shaaban et al., 1977) activities. In order to obtain detailed information on molecular conformation, the X-ray structure determination of the title compound, (I), has been carried out and the results are presented here.

The total puckering amplitude (Cremer \& Pople, 1975) of the tetrahydropyridine ring, B, is $Q_{T}=0.450$ (2) \AA and the values of the lowest displacement asymmetry parameters $\left(\right.$ Nardelli, 1983a), $\Delta_{2}(\mathrm{C} 6-\mathrm{C} 1)=0.053(1)$ and $\Delta_{S}(\mathrm{C} 12)=$ 0.060 (1), are indicative of a conformation intermediate between half-chair and sofa. The total puckering amplitude of the cyclopentene ring, A, is $Q_{T}=0.276$ (3) \AA and the value $\Delta_{S}(\mathrm{C} 11)=0.004(2)$ of the lowest asymmetry parameter is indicative of an envelope conformation. The $\mathrm{C} 7-\mathrm{C} 11-\mathrm{C} 12-$ C13 torsion angle of 175.1 (2) ${ }^{\circ}$ is indicative of the way the indole substituent is bonded to the tetrahydroquinoline.

The indole system is not strictly planar, the dihedral angle formed by the benzo and pyrrole planes being 2.6 (1) ${ }^{\circ}$. Atom N 15 deviates by 0.148 (2) \AA from the mean plane passing through C14, C16 and S22. This slight pyramidalization behaviour is also observed in related indoles (Yokum \& Fronczek, 1997; Beddoes et al., 1986). The torsion angles $\mathrm{O} 23-\mathrm{S} 22-\mathrm{N} 15-\mathrm{C} 16=171.2$ (2) and O23-S22-C25-C26 $=43.2(2)^{\circ}$ describe the conformation of the phenylsulfonyl group with respect to the indole system, which causes the best planes of the indole and phenyl rings to form a dihedral angle of $85.6(1)^{\circ}$, as observed in similar structures (Yokum \& Fronczek, 1997).

In the indole system, the endocyclic angles at C17 and C20 are contracted to 116.7 (2) and 118.5 (2) ${ }^{\circ}$, respectively, while those at C16 and C19 are expanded to 122.6 (2) and 121.2 (2) ${ }^{\circ}$, respectively. This would appear to be a real effect caused by the fusion of the smaller pyrrole ring to the six-membered benzene ring and the strain is taken up by angular distortion rather than by bond length distortions. A similar effect has also been observed by Govindasamy et al. (1999) and Sivaraman et al. $(1994,1996)$. The bond distances $\mathrm{S} 22=\mathrm{O} 24=$ 1.432 (2), S22= $\mathrm{O} 23=1.429$ (2) and $\mathrm{S} 22-\mathrm{C} 25=1.758$ (2) \AA are comparable with the reported values $[\mathrm{S}=\mathrm{O}=1.435$ (5) and $\mathrm{S}-\mathrm{C}=1.767$ (7) Å; Govindasamy et al., 1998], whereas $\mathrm{S} 22-\mathrm{N} 15=1.659$ (2) \AA varies appreciably from the reported value of 1.685 (5) A.

Figure 1
The molecular structure of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.

The orientation of the phenyl ring, D, is conditioned by the weak $\mathrm{C} 30-\mathrm{H} 30 \cdots \mathrm{O} 24$ interaction, while the orientation of the indole substituent is influenced by the weak interaction $\mathrm{C} 17-\mathrm{H} 17 \cdots \mathrm{O} 24$ (Table 2). The torsion angles O24-S22$\mathrm{C} 25-\mathrm{C} 30=-1.3(2), \mathrm{N} 15-\mathrm{S} 22-\mathrm{C} 25-\mathrm{C} 30=113.3(2)$, $\mathrm{O} 24-\mathrm{S} 22-\mathrm{N} 15-\mathrm{C} 16=41.3$ (2) and S22-N15-C16-C17 = $-18.2(3)^{\circ}$ quantitatively define these orientations.

Apart from the normal van der Waals interactions, the packing of the molecule in the solid state is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ intermolecular hydrogen bonds (Table 2).

Experimental

To a solution of 4-phenylsulfonyl-3-(N-phenylformimidoyl)indole $(0.648 \mathrm{~g}, 0.018 \mathrm{~mol})$ and cyclopentadiene $(0.237 \mathrm{~g}, 0.036 \mathrm{~mol})$ in acetonitrile $(10 \mathrm{ml})$ protected by a guard tube was added indium trichloride ($0.081 \mathrm{~g}, 20 \mathrm{~mol} \%$) and the mixture was stirred at room temperature for 30 min . Water (20 ml) was added to the reaction mixture, which was then extracted with chloroform ($3 \times 10 \mathrm{ml}$), washed with brine (10 ml), dried over anhydrous sodium sulfate and concentrated under reduced pressure. The crude product was purified by column chromotography using silica gel ($60-120$ mesh) and eluted with petroleum ether-ethyl acetate ($90: 10$) to afford compound (I) (yield 83\%).

Crystal data

$\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$
$M_{r}=426.52$
Monoclinic, $P 2_{1} / n$
$a=11.4515$ (2) A
$b=8.6572$ (1) \AA
$c=22.6109(4) \AA$
$\beta=90.864(1)^{\circ}$
$V=2241.34(6) \AA^{3}$
$Z=4$
$D_{x}=1.264 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 8192
reflections
$\theta=1.45-28.33^{\circ}$
$\mu=0.169 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, pale yellow
$0.48 \times 0.34 \times 0.28 \mathrm{~mm}$

Data collection

Siemens SMART CCD areadetector diffractometer ω scans
14562 measured reflections
5435 independent reflections
3542 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.040 \\
& \theta_{\max }=28.28^{\circ} \\
& h=-9 \rightarrow 15 \\
& k=-11 \rightarrow 10 \\
& l=-29 \rightarrow 29 \\
& \text { Intensity decay: }<2 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0586 P)^{2}\right. \\
&+0.9637 P] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.003 \\
& \Delta \rho_{\max }=0.50 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.49 \mathrm{e} \AA^{-3}
\end{aligned}
\end{aligned}
$$

Table 2
Hydrogen-bonding and short-contact geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C17-H17...O24	0.93	2.51	3.074 (3)	119
$\mathrm{C} 30-\mathrm{H} 30 \cdots \mathrm{O} 24$	0.93	2.54	2.912 (3)	104
$\mathrm{C} 29-\mathrm{H} 29 \cdots \mathrm{O} 23^{\text {i }}$	0.93	2.66	3.568 (4)	166
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 23^{\text {ii }}$	0.93	2.61	3.323 (3)	134
C19-H19 . N $1^{\text {iii }}$	0.93	2.71	3.602 (3)	162

Symmetry codes: (i) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$; (ii) $-x, 1-y,-z$; (iii) $x, 1+y, z$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS 97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1983b, 1995).

RS thanks CSIR, India, for a Senior Research Fellowship. DV thanks the UGC, India, for a major research project. SSSR thanks Universiti Sains Malaysia for a visiting Postdoctoral Research Fellowship and HKF thanks the Malaysian Government and Universiti Sains Malaysia for research grant R\&D No. 190-9609-2801.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1443). Services for accessing these data are described at the back of the journal.

References

Bailey, D. M., Mount, E. M., Siggins, J., Carlson, J. A., Yarinsky, A. \& Slighter, R. G. (1979). J. Med. Chem. 22, 599-601.

Beddoes, R. L., Dalton, L., Joule, J. A., Mills, O. S., Street, J. D. \& Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.

Billings, P. C. \& Heidelberger, C. (1982). Cancer Res. 42, 2692-2696.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Govindasamy, L., Velmurugan, D., Ravikumar, K. \& Mohanakrishnan, A. K. (1998). Acta Cryst. C54, 635-637.

Govindasamy, L., Velmurugan, D., Shanmuga Sundara Raj, S. \& Fun, H.-K. (1999). Acta Cryst. C55, 1315-1317.

Jaton, J. C., Roulin, K., Rose, K., Sirotnak, F. M., Lewenstein, A., Brunner, G., Fankhauser, C. P. \& Burger, U. (1997). J. Nat. Prod. 60, 356-360.
Nardelli, M. (1983a). Acta Cryst. C39, 1141-1142.
Nardelli, M. (1983b). Comput. Chem. 7, 95-98.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Norman, M. H., Navas, F., Thompson, J. B. \& Rigdon, G. C. (1996). J. Med. Chem. 39, 4692-4703.
Ohnishi, H., Kosuzume, H., Yamaguchi, K., Ohkura, M., Satoh, M., Uohama, M., Toyonaka, Y. \& Suzuki, Y. (1981). Jpn J. Pharmacol. 31, 747-756.
Padwa, A., Brodney, M. A., Liu, B., Satake, K. \& Wu, T. (1999). J. Org. Chem. 64, 3595-3607.
Shaaban, M. A., Ghoneim, K. M. \& Khalifa, M. (1977). Pharmazie, 32, 90-92.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sivaraman, J., Subramanian, K., Velmurugan, D. \& Subramanian, E. (1994). Acta Cryst. C50, 787-789, 789-791.
Sivaraman, J., Subramanian, K., Velmurugan, D., Subramanian, E. \& Seetharaman, J. (1996). J. Mol. Struct. 385, 123-128.
Uchida, M., Chihiro, M., Morita, S., Kanbe, T., Yamashita, H., Yamasaki, K., Yabuuchi, Y. \& Nakagawa, K. (1989). Chem. Pharm. Bull. (Tokyo), 37, 2109-2116.
Yokum, S. T. \& Fronczek, F. R. (1997). Acta Cryst. C53, 362-363.
Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.

